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Example Model: Stocks
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Example Model: Flows
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Flow

Key Component: Stock & Flow
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Example Model: Auxiliary Variables
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Constants & Time Series Parameters

* For similar reasons to auxiliary variables, we
give names to

— Model constants
— Time series



Example Model: Parameters
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Exa m p I e SySte m Stru cture Note treatment of flows as

links from flow to stock
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Simple First-Order Decay
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Use Formula: Deaths from Infection/Mean time until Death



Set Model Settings (Model
Menu/Settings Item)
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Dynamics of Stock?
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Stocks As Accumulations

* We often use stocks to accumulate (integrate)
other (evolving) quantities over time

 Example (assume time measured in years):

E]_'E['I'Eﬂt P |:|I]'|_'|l;-:-|_'|:i_|:|ﬂ A Key Reflection: If we have population of size
P, after 1 year, the stock holds 1*P. After 2 years,
2*P, after n years, n*P.
With a changing P, this integrates P over time.
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Another Example of Stocks as
Accumulations
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Slightly more Sophisticated
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Principle: Structure Determines
Behaviour

* Feedback & stock-and-flow structure of a system
determines the possible patterns of behaviour

e Different sets of parameters (e.g. values for
constants) will select particular behaviour within
these behaviour patterns

* Changes to the feedback structure can change
behaviour in fundamental ways



Simple SIT Model
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Classic Feedbacks
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Broadening the Model Boundaries:
Endogenous Recovery Delay
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Broadening the Model Boundaries:
Endogenous Recovery Delay
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A Different Behaviour Mode
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Structure as Shaping Behaviour

e System structure is defined by
— Stocks
— Flows
— Connections between them

* Nonlinearity: The behaviour of the whole is more
than the sum of the behaviour of the parts
— “Emergent” behaviour would not be anticipated from
simple behaviour of each piece in turn

e Stock and flow structure (including feedbacks) of a
system determines the qualitative behaviour modes
that the system can take on



First Order Delays in Action:
Simple SIT Model
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First Order Delays in Action:
Simple SIT Model

Mortality of undx diabetic
with complication

Mortality of undx diabetic population
without complication
population o O
<2
on
] Ave. years to develop undx digbetic with
complications from undx complication dying all
undx diabetic without diabetes causes
complication dying all ° e P
o causes Init undx diabetic with
c ':]&lqﬂ?out developing undx complication population
opulation | complication from undx
diabetic o -
vl
. o Fan P Undx Diabetic with undx diabetic with
Undx Diabetic without Complication £2] complication population
Complication Populati i i
omphication Population < Population — agng o
diabetes
diagnostic rate
licati o <Years in each age
o F diabetes diagnosis developing undx ct;lrlﬂp ca on% complication group-> o
undx, gllabtetlc e [tdcomplication from dx agnosts diagnostic rate,
without A
o complication - diabetic o
» population 4
agmg
e [ e
Dx Diabetic without Dx [halzilehcwrth comp]cajim? TTEEL
Complication Populati = O aging
omplication Population = - Populati o
developing dx
‘ T g complication from dx
diabetic
\ :__:, dx diabetic without Ave. vears to develop dx diabetic with Init dx c.liabeﬁc wrth
dx digbetic [idcomplication dying all complications from dx complcation dying afl complication population
without causes R diabetes o causes o
complication Init dx diabetic without M
aging complication populaitiono Mortality of dx diabetic
° ) with complication
Mortality of dx diabetic population

without compleation
population



Scenarios for First Order Delay:
Variation in Inflow Rates

e For different immigration (inflows) (what do you
expect?)
— Inflow=10
— Inflow=20
— Inflow=50
— Inflow=100
— Why do you see this “goal seeking” pattern?

— What is the “goal” being sought?



Behaviour of Stock for Different Inflows
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Goal Seeking Behaviour

* The goal seeking behaviour is associated with a
negative feedback loop

— The larger the population in the stock, the more people
die per year
* |f we have more people coming in than are going
out per year, the stock (and, hence, outflow!) rises
until the point where inflow=outflows

* |f we have fewer people coming in than are going
out per year, the stock declines (& outflow) declines
until the point where inflow=outflows



As a Causal Loop Diagram
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What does this tell us about how the system would respond to
a sudden change in immigration?



Response to a Change

Feed in an immigration “step function” that rises
suddenly from 0 to 20 at time 50
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* Set the Initial Value of Stock to O

How does the stock change over time?



Create a Custom Graph & Display it as
an Input-Output Object
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Create Input-Output Object
(for Synthesim)
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Stock Starting Empty
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Stock Starting Empty?
Value of Stock (Alpha=.05)
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For Different Values of (1/) Alpha
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This is for the flows. What do stocks do?



For Different Values of (1/) Alpha
Valye g&)Stocks
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of leaving per unit time) requires x to be larger to make outflow=inflow




Outflows as Delaved Version of Inputs
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Higher Order Delays & Aging
Chains



Moving Beyond the “memoryless
assumption”

* Recall that first order delays assume that the per-
time-unit risk of transitions to the outflow remains
equal throughout simulation (i.e. are memoryless)

* Problem: Often we know that transitions are not
"memoryless” e.g.

— It may be the transition reflects some physical delays not
endogeneously represented (e.g. Slow-growth of
bacterial)

— Buildup of “damage” of high blood sugars (Glycosylation)



Higher Orders of Delays

We can capture different levels of delay (with
increasing levels of fidelity) using cascaded series of
15t order delays

We call the delay resulting from such a series of k
15t order delays a “kt" order delay”

— E.g. 2 first order delays in series yield a 2" order delay

The behaviour of a kt" order delay is a reflection of
the behaviour of the 15t order delays out of which it
is built

To understand the behaviour of k*" order delays, we
will keep constant the mean time taken to
transition across the entire set of all delays



Recall: Simple 15t Order Decay
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(Initial Value: 1)

Use Formula: People with Virulent Infection/Mean time until Death



Recall: 15t Order Delay Behaviour

e Conditional transition prob: For a 15t Order delay,
the per-time-unit likelihood of leaving given that
one has not yet left the stock remains constant

* Unconditional transition prob: For a 15t Order delay,
the unconditional per-time-unit likelihood of
leaving declines exponentially
— i.e. if were were originally in the stock, our chance of

having left in the course of a given time unit (e.g. month)
declines exponentially

* This reflects the fact that there are fewer people who could
still leave during this time unit!



Recall: 15t Order Delay Behaviour
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2" Order Delay

Use Formula:
Mean Time to Transition Across All Stages/Stage Count
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2"d Order Delay
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3rd Order Delay
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Mean Times to Depart Final Stage

* Mean time of k stages is just k times mean time of one
stage (e.g. if the mean time for leaving 1 stage requires
time u, mean time for k = k*u

* |n our examples, as we added stages, we reduced the
mean time per stage so as to keep the total constant!

— i.e. if we have k stages, the mean time to leave each stage is
1/k times what it would be with just 1 stage
* Infinite order delay: As we add more and more stages
(k—0), the distribution of time to leave the last stage
approaches a normal distribution

— If we reduce the mean time per stage so as to keep the total
time constant, this will approach an impulse function
* This indicates an exactly fixed time to transition through all stages!



Distribution of Time to Depart Final Stage
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From Wikipedia, 2009



“Aging Chains” (including successive 15
Order Delays & Competing Risks) in our

Model of Chronic Kidnev Disease
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