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Example Model: Stocks 

 



Example Model: Flows 

 



Key Component: Stock & Flow 
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Net Flow Impact on Stock 
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Example Model: Auxiliary Variables 

 



Constants & Time Series Parameters 

• For similar reasons to auxiliary variables, we 
give names to  

– Model constants 

– Time series 

 

 



Example Model: Parameters 

 



 

Example System Structure  
Diagram 

Note treatment of flows as 
links from flow to stock 
•Inflows as positive links 
•Outflows as negative links 
 

 



Simple First-Order Decay 

 

People with
Virulent
Infection Deaths from

Infection

Mean time until
Death

Use Formula:   Deaths from Infection/Mean time until Death 

Use Initial Value:   1000 



Set Model Settings (Model 
Menu/Settings Item) 

 



Dynamics of Stock? 
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Dynamics of (Rate of)  
Death Flow? 
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Stocks As Accumulations 

• We often use stocks to accumulate (integrate) 
other (evolving) quantities over time 

• Example (assume time measured in years): 
A Key Reflection:  If we have population of size 
P, after 1 year, the stock holds 1*P.  After 2 years, 
2*P, after n years, n*P.   
With a changing P, this integrates P over time. 
 



Another Example of Stocks as 
Accumulations 

 



Slightly more Sophisticated 

 



Principle: Structure Determines 
Behaviour 

• Feedback & stock-and-flow structure of a system 
determines the possible patterns of behaviour 

• Different sets of parameters (e.g. values for 
constants) will select particular behaviour within 
these behaviour patterns 

• Changes to the feedback structure can change 
behaviour in fundamental ways 

 

 



Simple SIT Model 
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Classic Feedbacks 
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Dynamics 
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Broadening the Model Boundaries:  
Endogenous Recovery Delay 
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Broadening the Model Boundaries:  
Endogenous Recovery Delay 
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A Different Behaviour Mode 
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Structure as Shaping Behaviour 

• System structure is defined by 
– Stocks 

– Flows 

– Connections between them 

• Nonlinearity: The behaviour of the whole is more 
than the sum of the behaviour of the parts 
– “Emergent” behaviour would not be anticipated from 

simple behaviour of each piece in turn 

• Stock and flow structure (including feedbacks) of a 
system determines the qualitative behaviour modes 
that the system can take on 

 



Department of Computer 
Science 

First Order Delays in Action: 
Simple SIT Model 
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First Order Delays in Action: 
Simple SIT Model 

 



Scenarios for First Order Delay:  
Variation in Inflow Rates 

• For different immigration (inflows) (what do you 
expect?) 

– Inflow=10 

– Inflow=20 

– Inflow=50 

– Inflow=100 

– Why do you see this “goal seeking” pattern? 

– What is the “goal” being sought? 

 

 



Behaviour of Stock for Different Inflows 

 

Why do we see this behaviour? 



Goal Seeking Behaviour 
• The goal seeking behaviour is associated with a 

negative feedback loop 

– The larger the population in the stock, the more people 
die per year 

• If we have more people coming in than are going 
out per year, the stock (and, hence, outflow!) rises 
until the point where inflow=outflows 

• If we have fewer people coming in than are going 
out per year, the stock declines (& outflow) declines 
until the point where inflow=outflows 

 

 



 

What does this tell us about how the system would respond to 
a sudden change in immigration? 

As a Causal Loop Diagram 



Response to a Change 

• Feed in an immigration “step function” that rises 
suddenly from 0 to 20 at time 50 

 

 

 

 

 

 

• Set the Initial Value of Stock to 0 

• How does the stock change over time? 

 



Create a Custom Graph & Display it as 
an Input-Output Object 

 

 

 

 

• Editing 

 



Create Input-Output Object 
(for Synthesim) 

 



Stock Starting Empty 
Flow Rates 

 

Inflow and Outflow
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How would this change with alpha? 

Stock Starting Empty? 
Value of Stock (Alpha=.05) 



 

For Different Values of (1/) Alpha 
Flow Rates (Outflow Rises until = Inflow) 

This is for the flows.  What do stocks do? 



 

For Different Values of (1/) Alpha 
Value of Stocks 

Why do we see this behaviour?   A longer time delay (or smaller chance 
of leaving per unit time) requires x to be larger to make outflow=inflow 



Outflows as Delayed Version of Inputs 

 



Higher Order Delays & Aging 
Chains 



Moving Beyond the “memoryless 
assumption” 

• Recall that first order delays assume that the per-
time-unit risk of transitions to the outflow remains 
equal throughout simulation (i.e. are memoryless) 

• Problem: Often we know that transitions are not 
"memoryless” e.g.  

– It may be the transition reflects some physical delays not 
endogeneously represented (e.g. Slow-growth of 
bacterial) 

– Buildup of “damage” of high blood sugars (Glycosylation) 

 



Higher Orders of Delays 

• We can capture different levels of delay (with 
increasing levels of fidelity) using cascaded series of 
1st order delays 

• We call the delay resulting from such a series of k 
1st order delays a “kth order delay” 
– E.g. 2 first order delays in series yield a 2nd order delay 

• The behaviour of a kth order delay is a reflection of 
the behaviour of the 1st order delays out of which it 
is built 

• To understand the behaviour of kth order delays, we 
will keep constant the mean time taken to 
transition across the entire set of all delays 



Recall: Simple 1st Order Decay 

 

People with
Virulent
Infection Deaths from

Infection

Mean time until
Death

Use Formula:  People with Virulent Infection/Mean time until Death 

(Initial Value: 1) 



Recall:  1st Order Delay Behaviour 
• Conditional transition prob: For a 1st Order delay, 

the per-time-unit likelihood of leaving given that 
one has not yet left the stock remains constant  

• Unconditional transition prob: For a 1st Order delay, 
the unconditional per-time-unit likelihood of 
leaving declines exponentially 

– i.e. if were were originally in the stock, our chance of 
having left in the course of a given time unit (e.g. month) 
declines exponentially  

• This reflects the fact that there are fewer people who could 
still leave during this time unit! 

 

 

 

 



Recall:  1st Order Delay Behaviour 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



2nd Order Delay 

 

(Initial Value: 1) (Initial Value: 0) 

Use Formula: 
Mean Time to Transition Across All Stages/Stage Count 

(Use value of 2) 

(Use value of 50) 



2nd Order Delay 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



3rd Order Delay 

 



3rd Order Delay 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



1st through 6th 
OrderDelays 

 

(Likelihood of Still being In System) 

(Per-month chance of transitioning  
out during this month) 



Mean Times to Depart Final Stage 
• Mean time of k stages is just k times mean time of one 

stage (e.g. if the mean time for leaving 1 stage requires 
time , mean time for k = k* 

• In our examples, as we added stages, we reduced the 
mean time per stage so as to keep the total constant! 

– i.e. if we have k stages, the mean time to leave each stage is 
1/k times what it would be with just 1 stage 

• Infinite order delay: As we add more and more stages 
(k), the distribution of time to leave the last stage 
approaches a normal distribution 

– If we reduce the mean time per stage so as to keep the total 
time constant, this will approach an impulse function  

• This indicates an exactly fixed time to transition through all stages! 

 

 



Distribution of Time to Depart Final Stage 
• The distributions for the 

total time taken to 
transition out of the last of k 
stages are members of the 
Erlangdistribution family 
– These are the same as the 

distribution for the kth 

interarrival time of a Poisson 
process 

• k=1 gives exponential 
distribution (first order 
delay) 

• As k, approaches 
normal distribution 
(Gaussian pdf) 

 

 

 

From Wikipedia, 2009 



“Aging Chains” (including successive 1st 
Order Delays & Competing Risks) in our 

Model of Chronic Kidney Disease 
 


